PROPOSITION DE SOLUTION

Partie 1: Premiers exemples.

- 1) Les longueurs données s'obtiennent par application du théorème de Pythagore.
- 2) On a: $17 = 1^2 + 4^2$; $32 = 4^2 + 4^2$ et $45 = 3^2 + 6^2$ donc $\sqrt{17} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$; $\sqrt{32} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$ et $\sqrt{45} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$.
- 3) Soit $\sqrt{N} = \begin{bmatrix} x \\ y \end{bmatrix}$ on a : $N = x^2 + y^2 = y^2 + x^2$ d'où $\sqrt{N} = \begin{bmatrix} y \\ x \end{bmatrix}$ (ou bien par symétrie des triangles $\begin{bmatrix} x \\ y \end{bmatrix}$ et $\begin{bmatrix} y \\ x \end{bmatrix}$)

Partie 2: Longueurs deux fois traçables.

1) On a
$$9^2 + 2^2 = 81 + 4 = 85$$
 et $7^2 + 6^2 = 49 + 36 = 85$ donc $\sqrt{85} = \begin{bmatrix} 9 \\ 2 \end{bmatrix} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$.

2)
$$25 = 0^2 + 5^2 = 3^2 + 4^2$$
 donc $\sqrt{25} = \begin{bmatrix} 5 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$;
 $50 = 1^2 + 7^2 = 5^2 + 5^2$ donc $\sqrt{50} = \begin{bmatrix} 7 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$;
 $65 = 1^2 + 8^2 = 4^2 + 7^2$ donc $\sqrt{65} = \begin{bmatrix} 8 \\ 1 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \end{bmatrix}$.

- 3) a) $N_2 = 5 \times 2^2 + 5 = 25$ donc $\sqrt{N_2} = \sqrt{25}$, deux fois traçable d'après 2) précédent.
 - b) $(2k+1)^2 + (k-2)^2 = (4k^2 + 4k + 1) + (k^2 4k + 4) = 5k^2 + 5 = N_k \text{ donc } \sqrt{N_k} = \begin{bmatrix} 2k+1 \\ k-2 \end{bmatrix}$ $(2k-1)^2 + (k+2)^2 = (4k^2 - 4k + 1) + (k^2 + 4k + 4) = 5k^2 + 5 = N_k \text{ donc } \sqrt{N_k} = \begin{bmatrix} 2k-1 \\ k+2 \end{bmatrix}$

Il a été démontré que $\sqrt{N_k} = {2k+1 \brack k-2} = {2k-1 \brack k+2}$, il reste donc à vérifier les conditions de la définition :

D'une part
$$(2k+1) \ge (k-2) \operatorname{car} k \ge -3 \operatorname{car} k \ge 3$$

et $(2k-1) \ge (k+2) \operatorname{car} k \ge 3$

Et d'autre part
$$\begin{bmatrix} 2k+1 \\ k-2 \end{bmatrix} \neq \begin{bmatrix} 2k-1 \\ k+2 \end{bmatrix}$$
 car $(2k+1) \neq (2k-1)$ (ou aussi $(k-2) \neq (k+2)$)

Donc $\sqrt{N_k}$ est bien deux fois traçable.

c) La réciproque est fausse car $\sqrt{65}$ est deux fois traçable alors que 65 n'est pas de la forme $5k^2 + 5$ car (N_k) est croissante avec $N_2 = 25$; $N_3 = 50$ et $N_4 = 85$ (ou $65 = 5k^2 + 5$ donne $k = \sqrt{12}$ qui n'est pas un entier naturel).

Partie 3 : Etude des longueurs plusieurs fois traçables

- 1) Un nombre premier N a pour uniques diviseurs 1 et N, il s'écrit donc uniquement sous la forme des produits $1 \times N$ ou $N \times 1$. Si N est deux fois traçable, d'après la propriété admise, $N = (a^2 + b^2)(c^2 + d^2)$ avec $a > b \ge 1$ et $c > d \ge 1$ donc $a^2 + b^2 \ge 2^2 + 1^2 = 5$ et $a^2 + d^2 \ge 2^2 + 1^2 = 5$ donc $a^2 + b^2 \ge 2^2 + 1^2 = 5$ donc a^2
- 2) Pour déterminer les deux plus petits entiers N non multiples de 5 de la forme ($a^2 + b^2$) ($c^2 + d^2$) avec $a > b \ge 1$ et $c > d \ge 1$ il faut (et il suffit) qu'aucun des facteurs ($a^2 + b^2$) et ($c^2 + d^2$) ne soit divisible par 5.

Par commutativité du produit, on peut supposer que $(a^2 + b^2) \le (c^2 + d^2)$ (pour ordonner la recherche) puis considérer les plus petites valeurs de $(a^2 + b^2)$ successives telles que $a > b \ge 1$:

(a ; b) = (2 ; 1) :
$$a^2 + b^2 = 5$$
, à exclure car multiple de 5

$$(a; b) = (3; 1) : a^2 + b^2 = 10$$
, à exclure car multiple de 5

(a; b) = (3; 2): $a^2 + b^2 = 13$ et on associe ensuite le plus petit facteur pour ($c^2 + d^2$) possible:

$$(c; d) = (3; 2) : c^2 + d^2 = 13 d'où N = 13 \times 13 = 169$$

ou bien $(c;d) = (4;1) : c^2 + d^2 = 17 \text{ d'où } N = 13 \times 17 = 221.$

(a;b)=(4;1):a²+b²=17: recherche terminée car alors c²+d²≥17 donc N supérieur aux deux précédents.

<u>Pour 169</u>: Par application de la formule donnée avec $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ et $\begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ on obtient :

$$\sqrt{169} = \begin{bmatrix} 9+4 \\ |6-6| \end{bmatrix} = \begin{bmatrix} 13 \\ |0| \end{bmatrix} = \begin{bmatrix} 13 \\ 0 \end{bmatrix}$$
 et $\sqrt{169} = \begin{bmatrix} 9-4 \\ 6+6 \end{bmatrix} = \begin{bmatrix} 5 \\ 12 \end{bmatrix} = \begin{bmatrix} 12 \\ 5 \end{bmatrix}$

<u>Pour 221</u>: Par application de la formule donnée avec $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ et $\begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$ on obtient :

$$\sqrt{221} = \begin{bmatrix} 12+2 \\ |3-8| \end{bmatrix} = \begin{bmatrix} 14 \\ |-5| \end{bmatrix} = \begin{bmatrix} 14 \\ 5 \end{bmatrix} \text{ et } \sqrt{221} = \begin{bmatrix} 12-2 \\ 3+8 \end{bmatrix} = \begin{bmatrix} 10 \\ 11 \end{bmatrix} = \begin{bmatrix} 11 \\ 10 \end{bmatrix}$$

3) Il s'agit de vérifier s'il existe a, b, c, d tels que 2023 = ($a^2 + b^2$) ($c^2 + d^2$) avec $a > b \ge 1$ et $c > d \ge 1$

Par commutativité du produit, on peut supposer pour ordonner la recherche que ($a^2 + b^2$) \leq ($c^2 + d^2$).

Or $2023 = 7 \times 17 \times 17$.

Comme $a^2 + b^2 \neq 1$ (car $a^2 + b^2 \geq 2^2 + 1^2 = 5$), les seules valeurs possibles pour ($a^2 + b^2$) sont donc :

 $(a^2 + b^2) = 7$: non (autrement dit $\sqrt{7}$ n'est pas traçable)

$$(a^2 + b^2) = 17 \text{ d'où } (a; b) = (4; 1)$$

et alors on doit avoir ($c^2 + d^2$) = 7 × 17 = 119 (autrement dit vérifions si $\sqrt{119}$ est traçable)

En calculant ($119 - d^2$) avec $1 \le d \le 7$, on n'obtient pas de carré d'entier (Et si $d \ge 8$, avec $c^2 + d^2 = 119$, on obtient $c^2 < d^2$: à exclure car par définition c > d) donc ($c^2 + d^2$) $\ne 119$.

Conclusion: $\sqrt{2023}$ n'est pas deux fois tracable.

4) $325 = 5 \times 65 \text{ avec } \sqrt{5} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \text{ donc } 5 = 2^2 + 1^2 \text{ et } \sqrt{65} = \begin{bmatrix} 8 \\ 1 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \end{bmatrix} \text{ donc } 65 = 8^2 + 1^2 = 7^2 + 4^2$

Il vient, en appliquant la formule donnée avec :

•
$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 et $\begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 8 \\ 1 \end{bmatrix}$: $\sqrt{325} = \begin{bmatrix} 16+1 \\ |2-8| \end{bmatrix} = \begin{bmatrix} 17 \\ |-6| \end{bmatrix} = \begin{bmatrix} 17 \\ 6 \end{bmatrix}$ et $\sqrt{325} = \begin{bmatrix} 16-1 \\ 2+8 \end{bmatrix} = \begin{bmatrix} 15 \\ 10 \end{bmatrix}$

•
$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 et $\begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \end{bmatrix}$: $\sqrt{325} = \begin{bmatrix} 14+4 \\ |8-7| \end{bmatrix} = \begin{bmatrix} 18 \\ |1| \end{bmatrix} = \begin{bmatrix} \mathbf{18} \\ \mathbf{1} \end{bmatrix}$ et $\sqrt{325} = \begin{bmatrix} 14-4 \\ 8+7 \end{bmatrix} = \begin{bmatrix} 10 \\ 15 \end{bmatrix} = \begin{bmatrix} \mathbf{15} \\ \mathbf{10} \end{bmatrix}$

Donc
$$\sqrt{325} = \begin{bmatrix} 15 \\ 10 \end{bmatrix} = \begin{bmatrix} 17 \\ 6 \end{bmatrix} = \begin{bmatrix} 18 \\ 1 \end{bmatrix}$$

Partie 4: Application à une configuration dans l'espace.

1) Dans OBC rectangle en B, d'après le théorème de Pythagore : $OC^2 = OB^2 + BC^2$

Et dans OAB rectangle en A, d'après le théorème de Pythagore : $OB^2 = OA^2 + AB^2$

Donc
$$OC^2 = OA^2 + AB^2 + BC^2 = x^2 + y^2 + z^2$$
.

2) a) Si $z \le 5$ alors $x \le y \le z \le 5$ donc $x^2 + y^2 + z^2 \le 5^2 + 5^2 + 5^2 = 75$ donc $x^2 + y^2 + z^2 \ne 81$;

et si
$$z > 9$$
 alors $x^2 + y^2 + z^2 > 9^2 = 81$ donc $x^2 + y^2 + z^2 \neq 81$

donc $6 \le z \le 9$

- b) Soit P(x, y, z): P appartient à S si et seulement si $OP^2 = 9^2$ donc si et seulement si $x^2 + y^2 + z^2 = 81$ On cherche donc les P(x; y; z) de coordonnées entières tels que $x^2 + y^2 + z^2 = 81$.
- \Rightarrow Supposons d'abord x, y, z entiers naturels avec $x \le y \le z$ (pour ordonner la recherche).

On a donc $6 \le z \le 9$:

```
z = 6: x^2 + y^2 + 36 = 81 donc x^2 + y^2 = 45 d'où (x; y) = (3; 6) d'où le point P_6 = (3; 6; 6)

z = 7: x^2 + y^2 + 49 = 81 donc x^2 + y^2 = 32 d'où (x; y) = (4; 4) d'où le point P_7 = (4; 4; 7)

z = 8: x^2 + y^2 + 64 = 81 donc x^2 + y^2 = 17 d'où (x; y) = (1; 4) d'où le point P_8 = (1; 4; 8)

z = 9: x^2 + y^2 + 81 = 81 donc x^2 + y^2 = 0 d'où (x; y) = (0; 0) d'où le point P_9 = (0; 0; 9)
```

(Remarque : on retrouve les différentes valeurs de (x; y) obtenues en Partie 1)

- → Par permutation de (x, y, z) on obtient : 3 points avec P_6 ; 3 points avec P_7 ; 6 points avec P_8 et 3 points avec P_9 soit exactement 3 + 3 + 6 + 3 = 15 points de coordonnées entières <u>naturelles</u> situés sur la sphère S.
- → Pour obtenir les coordonnées pouvant être négatives il suffit d'effectuer des changements de signes et donc d'appliquer aux coordonnées de <u>chacun</u> des points associées à P₆, P₇, P₈ précédents un seul signe « » (d'où 3 autres points) ou deux signes « » (d'où 3 autres points) ou trois signes « » (d'où 1 autre point) soit 7 <u>autres</u> points en tout de coordonnées entières relatives obtenus à partir de chacun des 12 points associés à P₆, P₇, P₈.

Quant aux points associés à P_9 , comme 0 = -0, on ne peut qu'ajouter un signe « - » à la valeur 9 pour obtenir un nouveau point par changement de signe, donc 1 point supplémentaire pour chacun des 3 points associés à P_9 .

Le nombre total de points à coordonnées entières appartenant à S est donc égal à $12 \times 8 + 3 \times 2 = 102$. CQFD