Démonstration de :

(1) \sqrt{N} deux fois traçable

$$\Leftrightarrow \quad \textcircled{2} \ \exists \ (a;b;c;d) \text{ entiers naturels tels que } N = (a^2 + b^2)(c^2 + d^2) \text{ avec } a > b \ge 1 \text{ et } c > d \ge 1$$

$$\text{Et alors on a } \sqrt{N} = \begin{bmatrix} ac + bd \\ |ad - bc| \end{bmatrix} = \begin{bmatrix} ac - bd \\ ad + bc \end{bmatrix}$$

 $\bigcirc 2$:

① : \sqrt{N} deux fois traçable \exists (A; B; C; D) entiers naturels tels que $N = A^2 + B^2 = C^2 + D^2$ avec $A \ne C$ et de D.

2 sera démontrée en 3 propositions :

Proposition 1: (A; B; C; D) peuvent être ordonnés de telle façon que A > C avec A et C de même parité

D > B avec B et D de même parité

• On peut supposer que A est le plus grand des 4 entiers A, B, C, D et comme A \neq C et A \neq D on a A > C et A > D, Alors B² = N - A² < N - D² = C²

$$< N - C^2 = D^2$$
 donc B $< C$ et B $< D$.

• $N = A^2 + B^2 = C^2 + D^2$ donc

- Si *N* est impair, A et B ainsi que C et D doivent être de parités différentes donc, quitte à inverser C et D (inversion compatible avec les relations d'ordre du précédent point), on peut supposer que A et C ainsi que B et D sont de même parité.
- Et si N est pair, A et B doivent être de même parité, ainsi que C et D. Or si A = 0 [2] et B = 0 [2] alors $A^2 + B^2 = 0$ [4]; et si C = 1 [2] et D = 1 [2] alors $C^2 + D^2 = 2$ [4] Donc $A^2 + B^2 \neq C^2 + D^2$.

Donc si *N* est pair alors nécessairement A, B, C, D sont tous de même parité (donc en particulier A, C et B, D)

Proposition 2: \exists (a; b; c; d) entiers naturels tels que A = ad + bc; B = ac - bd; C = ad - bc; D = ac + bd

$$A^2 + B^2 = C^2 + D^2$$
 donc $A^2 - C^2 = D^2 - B^2$ donc $(A - C)(A + C) = (D - B)(D + B)$

Avec (A - C); (A + C); (D - B); (D + B) entiers naturely pairs non nuls (d'après la proposition 1)

Posons alors PGCD(A - C; D - B) = 2a et PGCD(A + C; D + B) = 2b

On a A - C = 2aq; D - B = 2ar où q et r sont 1^{ers} entre eux (et non nuls)

A + C = 2bd; D + B = 2bc où c et d sont 1^{ers} entre eux (et non nuls)

Alors
$$(A - C)(A + C) = 4abdq = (D - B)(D + B) = 4abcr$$

Donc dq = cr donc $d \mid$ cr avec d et c 1^{ers} entre eux donc (Gauss) : $d \mid$ r donc r = kd (k entier naturel non nul)

q | cr avec q et r 1^{ers} entre eux donc (Gauss) : $q \mid c$ donc c = k'q (k' entier naturel non nul)

Donc $dq = cr = k'q \times kd$ donc kk' = 1 donc k = k' = 1 d'où r = d et q = c

Il vient alors que : A - C = 2ac; D - B = 2ad; A + C = 2bd; D + B = 2bc;

D'où:
$$A = (2ac + 2bd)/2 = ac + bd$$
; $C = (2ac - 2bd)/2 = ac - bd$; $D = (2ad + 2bc)/2 = ad + bc$; $B = (2bc - 2ad)/2 = bc - ad$

Proposition 3: $N = (a^2+b^2)(c^2+d^2)$ avec a > b ≥ 1 et c > d ≥ 1

Avec la proposition 2:
$$N = A^2 + B^2 = (ac + bd)^2 + (ad - bc)^2 = C^2 + D^2 = (ac - bd)^2 + (ad + bc)^2$$

= $a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2$
= $(a^2 + b^2)(c^2 + d^2)$

De plus $\bullet A \neq C \operatorname{donc} A^2 - C^2 = (A + C)(A - C) = 4\operatorname{abcd} \neq 0 \operatorname{donc} a, b, c, d \operatorname{non nuls}$

•
$$A \neq D$$
 donc $A - D = (ac + bd) - (ad + bc) = (a - b)(c - d) \neq 0$ donc $a \neq b$ et $c \neq d$.

• Comme $N = (a^2 + b^2)(c^2 + d^2)$, on peut inverser a avec b et c avec d et donc supposer $a \ge b$ et $c \ge d$

Donc \exists (a;b;c;d) entiers naturels tels que $N=(a^2+b^2)(c^2+d^2)$ avec $a>b\geq 1$ et $c>d\geq 1$ ②

$2 \Rightarrow 1$:

(2): \exists (a; b; c; d) entiers naturels tels que $N = (a^2 + b^2)(c^2 + d^2)$ avec $a > b \ge 1$ et $c > d \ge 1$

On a:
$$N = a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 = (ac - bd)^2 + (ad + bc)^2$$

=
$$(ac + bd)^2 + (ad - bc)^2 = (ac + bd)^2 + |ad - bc|^2$$

Avec (ac - bd); (ad + bc); (ac + bd); |ad - bc| entiers naturels (ac - bd est positif car a > b > 0 et c > d > 0)

Donc
$$\sqrt{N} = \begin{bmatrix} ac + bd \\ |ad - bc| \end{bmatrix} = \begin{bmatrix} ac - bd \\ ad + bc \end{bmatrix}$$

Pour conclure que \sqrt{N} est deux fois traçable il reste à montrer que (ac + bd) \neq (ac - bd) et (ac + bd) \neq (ad + bc):

- $(ac + bd) (ac bd) = 2bd \neq 0 car b \neq 0 et d \neq 0 donc (ac + bd) \neq (ac bd)$
- $(ac + bd) (ad + bc) = (a b)(c d) \neq 0 car a \neq b et c \neq d donc (ac + bd) \neq (ad + bc)$

Donc \sqrt{N} est deux fois traçable et $\sqrt{N} = \begin{bmatrix} ac + bd \\ |ad - bc| \end{bmatrix} = \begin{bmatrix} ac - bd \\ ad + bc \end{bmatrix}$ 1

CQFD.